
From ACID to BASE: NoSQL with Db2

Peter Vanroose
ABIS Training & Consulting
pvanroose@abis.be

Session Code: G6

Tue, Nov 06, 2018 14:30 | Platform: Db2 for z/OS

Agenda

· NoSQL, BigData, analytics
· ACID versus BASE
· “flat” data, versus XML / JSON
· Db2 flexibility: BLOB, hash access, APPEND YES, MQTs, ...

· Parallelism and sharding
· cluster-based model: data distribution & replication; shared-nothing
· the CAP theorem
· Db2: what about data sharing, clone tables, IDAA, ... ?

· Weakening ACID in Db2
· ISOLATION(UR); NOT ENFORCED; LOG NO; ...
· restartable programs; pseudo-conversation

 2

NoSQL - what’s in a name

Wikipedia:
· A NoSQL or Not Only SQL database provides a mechanism for

· storage/retrieval of data, modelled otherwise than in RDBMS tables
· motivations for this approach include:

 simplicity of design, horizontal scaling, higher availability, faster response

· Growing industry use in big data and real-time web applications.

· Many NoSQL stores compromise consistency
in favour of availability and partition tolerance (“CAP theorem”)

· Most NoSQL stores lack true ACID transactions
Term NoSQL introduced 1998 by Carlo Strozzi (shell-interfaced RDBMS);
term reintroduced 2009 in the context of distributed DBs (now meaning not relational)

 3

NoSQL and Big Data

· 3 Vs (Gartner 2001): high-Volume, high-Velocity, high-Variety data

· (distributed) data analysis (data mining; statistical techniques)

· insight:
· keep all data (sensor data, website clicks, blogs, ...)
· in their original format (no ETL)
· for potential later use (not yet decided at moment of collection)

(pre-formatting may destroy or bias some information)

· as a consequence:
· unstructured (or semi-structured, non-flat) data
· less quality control or semantics during load => mainly useful for OLAP
· interpretation & value judgement: done by ad-hoc analysis step(s)

 4

Alledged problems/issues with “relational”

Some often heard arguments:

· 1. flat, tabular representation is unnatural

· 1b. need to convert to / from original (natural) representation

· 2. data modelling (DDL) beforehand => too rigid / restrictive / complex

· 2b. single column can only store similar data => too limiting

· 3. often need table joins => too heavy / complex / non-intuitive

· 4. may not scale well (horizontal scaling; large tables & growing)

· 5. too low concurrency (simultaneous users; parallelism)

· ...

 5

Problem #1 - flat data

Statement: “flat, tabular representation is unnatural”

Db2’s response:

· store as XML (already since Db2 9 -- that is: 2007 !)
· interrogate with XQuery or (even better) just with SQL:

SELECT coname, XMLQUERY('count($E//function[.="analyst"])' PASSING empl as E)
FROM companies
WHERE XMLEXISTS('$E/employees/person[function="analyst"]' PASSING empl AS E)
;
SELECT c.coname, x.func AS employee_function
FROM companies c, XMLTABLE('$E/employees/person' PASSING c.empl AS E)

COLUMNS func VARCHAR(64) PATH 'function') x

· store as JSON (some support since Db2 11)
SELECT value FROM SYSTOOLS.JSON_TABLE(c.empl, 'employees.person.function', 's:64') x

 6

Problem #1b - convert to/from flat data

Db2 indeed does not require us to convert between XML & flat !

but XML or JSON: probably still too rigid / too limited !
· How can we store anything whatsoever

· and yet easily
· find it back and/or
· aggregate on it (count/sum/avg/rank/top10/...)

“In search of a middle ground between file system & database”
=> one size does not fit all ... (Robert Greene, 2012)

Which brings us to Problem #2 ...

 7

Problem #2 - data modelling (DDL) beforehand

NoSQL wants:
· schema-less storage (=> dynamically add new attributes)

· but with keys & values (tuple store, ...) & possibly indexes

most NoSQL databases offer the possibility to work
· without a “schema”, i.e., without predefined structure

· or with dynamically changing schema’s

BUT which guarantees can such a setup provide us?

Db2’s response:

· more flexible DDL changes (e.g. DROP COLUMN); created GTTs; CTEs

 8

Intermezzo: NoSQL database types

· Key/Value Databases
· Examples: Berkeley DB, Oracle NoSQL, Dynamo, MapReduce

· Document Stores
· Examples: MongoDB, CouchDB, MarkLogic, IBM Lotus Notes (Domino)

· Columnar Databases
· Examples: Google Bigtable (2006), HBase, Cassandra, Db2 BLU

· Graph (navigational) Data Model
· Examples: Neo4j, GraphDB, InfoGrid, IMS

· Network DBMS
· Examples: IDMS

 9

Intermezzo: NoSQL database types (cont’d)

Key/Value Database
· data stored based on programmer-defined keys [hash table approach]

· system is agnostic as to the semantics of the value

· requests are expressed in terms of keys: put(key, value), get(key): value

· indexes are defined over keys

10

Intermezzo: NoSQL database types (cont’d)

Key/Value Database - Db2’s related possibilities:
· Hash access:

· Db2 table(space) which is not cluster-organized, but organized “by hash”
· allows for fastest possible (single-page) access to a single row
· hash “key” must be the primary key

· The BYTE(n) and VARBYTE(n) datatypes
· similar to CHAR(n) and VARCHAR(n)
· but no CCSID => no text interpretation, hence no auto-conversion

· The BLOB datatype

· The Db2 transaction logs

11

Intermezzo: NoSQL database types (cont’d)

Document store
· documents stored with programmer-defined key [“key-value”]

· system is aware of the arbitrary document structure

· support for lists, pointers and nested documents

· support for key-based & secondary indexes (with search possibility)

12

Intermezzo: NoSQL database types (cont’d)

Document store - Db2’s answer:
· XML (again)

· but not quite a “document store”
· note the complicated way to assign an XML Schema to an XML document

...
cf. SYSIBM.XSROBJECTS catalog table

· impossible to more generally “link” XML documents within Db2

13

Intermezzo: NoSQL database types (cont’d)

Columnar Database
· stores tables as sections of columns of data

· data stored together with meta-data (‘a map’)
[typically including row id, attribute name & value, timestamp]

Peter 2013 75

Peter 2014 11

Peter 3

Eliza 2014 70

Eliza 2014 1

2012 472

2011 11

...

...

...

Eliza : [4, 5]

Peter: [1, 2, 3]

...

2011 : [7, ...]

2012 : [6, ...]

2013 : [1]

2014 : [2, 4, 5]

1 : [5]

3 : [3]

11 : [2, 7]

70 : [4]

75 : [1]

472 : [6]

...

or

(name, Eliza, v1, 4)

(name, Eliza, v1, 5)

(name, Peter, v1, 1)

(name, Peter, v1, 2)

(name, Peter, v1, 3)

(date, 2011, v1, 7)

...

(date, 2012, v1, 6)

...

(date, 2013, v1, 1)

(date, 2014, v1, 2)

(date, 2014, v1, 4)

(date, 2014, v1, 5)

(amount, 1, v1, 5)

(amount, 3, v1, 3)

(amount, 4, v1, 2) *

(amount, 11, v1, 7)

(amount, 11, v2, 2)

(amount, ...)

14

Intermezzo: NoSQL database types (cont’d)

Columnar Database - Db2’s answer:
· Db2 for LUW has so-called “BLU acceleration”:

· in-memory tables
· stored in a columnar fashion

=> better compression (similar data) & “sparse” (data skipping)

· no counterpart (yet) in Db2 for z/OS

· is essentially an indexes-only table! (one per column; sorted on ts)

Related Db2 technology:
· in-memory buffer pools (PGSTEAL(NONE)) since Db2 12

· table ddl: APPEND YES keyword; or MEMBER CLUSTER on tablespace

15

Intermezzo: NoSQL database types (cont’d)

Graph (navigational) Data Model
· data stored as nodes & links, both with (arbitrary) attributes

· requests through system id’s (or through indexes)

16

Intermezzo: NoSQL database types (cont’d)

Graph (navigational) Data Model - Db2’s implementation:
· This is exactly the internal data representation of Db2 !

· index: hierarchic structure, with internal & external pointers (RIDs)
· page sets (including space map pages)
· fan sets (both for indexes and for foreign keys)
· log records, RBAs/LRSNs, log range info in the directory

· Is even used exclusively in the runtime environment
· static SQL
· packages & access paths

17

Problem #3 - table joins are heavy

Statement: “table joins: too often needed, too heavy, unnatural”

Db2’s response:

· normalisation (hence joins) avoids redundancy; one may denormalize

· use VIEWs to hide the “complexity” of joins

· use MQTs to additionally make join views “lighter” (performance)
· but ... beware of refresh issues! (consistency (ACID) jeopardised ...)

· aggregate concatenation (Db2 12 FL 501):
SELECT coname, LISTAGG(pname, ', ') WITHIN GROUP (ORDER BY pname) AS employees
FROM companies JOIN persons ON cono = p_cono GROUP BY p_cono
;
SELECT coname, (SELECT LISTAGG(pname, ', ') FROM persons WHERE p_cono=c.cono)
FROM companies c

18

Problem #4 - scalability, parallelism, sharding

NoSQL wants:
· to use a distributed storage model (autonomous “nodes”; TCP/IP)

· with data partitioning (“sharding”), i.e.: horizontally splitting

· with replication for fault-tolerance (redundancy across nodes)

==> hence can afford “commodity hardware”

==> scales linearly: e.g. 10x more nodes for 10x more data or users
=> same response times promised ...

· sharding & replication allow for parallelism:
serve multiple clients in parallel (from different data copies),
and/or divide the work for 1 client over multiple workers

19

Scalability, parallelism, sharding, replication

Data node = Worker (Worker 1 may e.g. need data from Data node 2, though ...)

20

Sharding with Db2 ?

Db2’s implementation of “sharding” ?

· Partitioning => either PBG or PBR
· can imply (if wanted) that partitions are on different volumes

=> no shared disks; no replication though (except for backups + logs)

· but partitions cannot be in different buffer pools (shared real memory)
· also need single Db2 subsystem (shared LPAR)
· indexes: DPSI or not => note Db2 does not require any indexes!

· Data sharing: (=> note that data sharing is not sharding !)

· no shared processor, no shared real memory (buffer pools)
· but shared disks! => lock coordination (CF); use MEMBER CLUSTER ?

21

Sharding with Db2 ? (cont’d)

· Clone tables ? (atypical use case to implement 2-fold replication ...)
==> Always a shared something solution ...

· IDAA
· a.k.a. Netezza / Sailfish
· a “black box” appliance, accessible (only) by the Db2 optimizer
· implements:

· replication of (some) Db2 data
· internal replication & sharding (multi-processor)
· analytic processing (distributed) on this data

· is a real NoSQL implementation!

22

Transactions, consistency and availability

· In a ‘shared something’ environment, ACID is wanted:
· Pessimistic behaviour: force consistency at end of transaction!
· Atomicity: all or nothing (of the n actions): commit or rollback
· Consistency: transactions never observe or cause inconsistent data
· Isolation: transactions are not aware of concurrent transactions
· Durability: acknowledged transactions persist in all events (even disaster)

· In a ‘shared nothing’ environment, BASE is implemented:
· Optimistic behaviour: accept temporary database inconsistencies

· Basically Available [guaranteed thanks to replication - no wait times]
· Soft state [it’s the user’s (application’s) task to guarantee consistency]
· Eventually consistent (weakly consistent) [‘stale’ data is OK]

23

Distributed data & processing

Why not have the best of both worlds?

=> Consistency (ACID): all clients see same data at same moment

=> Availability (through N-fold replication): no server timeouts

=> speed (through sharding) => Partition tolerance

CAP theorem:
· Brewer’s Conjecture (2000; proved in 2002; refined in 2012):

in any environment (shared-nothing or not)
it is only possible to satisfy at most two of these requirements

· C + A => ACID; A + P => BASE; C + P => write N read 1 / write 1 read N

24

CAP theorem

�������������	���
	

������������������	�

�

��

�� ��

�����

����
�	�������������

����	��	���������	��������

���� !�"#�$

����%���"��&	%������#'�

���(��$�)*+#�$�#�

�(�����&���

�����($�)+

���%,�	����(�-
.�������/�

���� !�"#�$

��	�/�	������	&���

���(��$�)*+#�$�#�

����+���	��0,	�����	��

0���	�

�����($�)+

����������+	�������	�

25

Weakening ACID in Db2

· Atomicity: transaction (consisting of the n actions): all or nothing
· long-running transactions => might be problematic!

· logs span multiple log data sets => active log (& log buffers) too large
· locks of long duration -- either SHARED or EXCLUSIVE

· 2 “old” solutions:
· regularly commit (say every 5 seconds) => breaks atomicity: a bit BASE !
· use ISOLATION(UR) for long running reads => see also Consistency ...

· and a “newer” one:
· optimistic locking, lock avoidance, latches, ...
· idea: don’t place exclusive locks, but verify “last modified” time on read

=> data page timestamp, row change timestamp column, ...

26

Weakening ACID in Db2 (cont’d)

· Consistency: transactions never observe or cause inconsistent data
· READ locks should last at least until effective read => ISOLATION(CS)
· what about e.g. phantom reads? => ACID would require ISOLATION(RR) !!
· WRITE inconsistency:

· using NOT ENFORCED foreign key constraints (or no FKs at all ...)
· not using cursor FOR UPDATE, yet update (without CURRENT OF): evil!

· load ENFORCE NO, then -START DB(xx) SP(yy) ACCESS(FORCE)
(might make sense for e.g. a test environment)

· Isolation: transactions are not aware of concurrent other transactions
· weakened through (again) ISOLATION(UR), or regular commits
· NoSQL would use replication though ... => mimic with MQTs ?

27

Weakening ACID in Db2 (cont’d)

· Durability: acknowledged transactions persist in all events
· also in case of a disaster (e.g. disk crash)
· Db2 guarantees this through Image Copies & transaction logs
· “circumventing” the Db2 default behaviour:

· ALTER TABLESPACE ... NOT LOGGED
· LOAD ... LOG NO
· not making image copies (or deleting them)

· => COPY PENDING state => Db2 does not allow data changes

· -START DATABASE(...) SPACENAM(...) ACCESS(FORCE)

28

“NoSQL” application scenario’s with Db2

Some typically considered “application design” scenario’s

which contain aspects which are not 100% “ACID”:
· Long running applications (typically: batch jobs)

· need to “commit regularly”
· should also apply to read-only applications! (often forgotten ...)

· Risk of inconsistent data, when application abends !
· incomplete updates/inserts
· duplicate updates/inserts on restart of job! => even worse ...

· Solution: make application restartable => programming skill!

29

“NoSQL” application scenario’s with Db2 (cont’d)

· Long running interactive applications
· graphical front-end, e.g. “paging” application: one screen at a time
· cursor locks must be kept ... => unacceptable
· solution: pseudo-conversation

· application retrieves data for just 1 screen from Db2
· application closes connection with Db2 after each screen
· application reconnects to Db2 on “page down” or “page up” request

· This requires ORDER BY and additional WHERE key > :LastSeen
· Db2 12 has new handy “paging” syntax for when key is multi-column!

30

Restartability

· Not a new issue:
· has been used for mainframe batch application development since “ages”
· non-restartable programs are often rewritten to become restartable

· but typical for a “NoSQL” approach: because it’s a client decision

· What is restartability?

· When a batch application returns normally => RC=0, no problem
· When a batch application returns abnormally (abend, or RC > 4):

· Could e.g. be a “disk full” problem, or an “unavailable dataset” issue
· Can the operator safely restart the program, after fixing the cause?
· In general, no: risk of e.g. partial duplicate updates in Db2 ...
· Unless either no intermediate commits, or program is restartable !

31

Restartability - Example

EXEC SQL SELECT STATUS INTO :ExecutionStatus FROM SYNCTable ;
if (ExecutionStatus == NormalEnd) { NormalStart(); } else { PrepareProgramRestart(); }

NormalStart():
ProdNo <- 0; OrdNo <- 0; Totals <- 0; EXEC SQL UPDATE SYNCTable SET STATUS = :Running ;

PrepareProgramRestart():
EXEC SQL SELECT PRNO,ORDNO,TOTALS INTO :ProdNo, :OrdNo, :Totals FROM SYNCTable ;

EXEC SQL DECLARE prod CURSOR WITH HOLD FOR
SELECT ... FROM ... WHERE ... AND (PRODNO,ORDNO) > (:ProdNo, :OrdNo) -- Db2 12
ORDER BY PRODNO, ORDNO ;

· Note: restart info is saved in Db2 “syncpoint” table !!

32

Restartability - Example (cont’d)

NormalProgramEnd():
EXEC SQL UPDATE SYNCTable SET PRNO=0, ORDNO=0, STATUS= :NormalEnd ;
EXEC SQL COMMIT ;

· If the batch program modifies data,

COMMIT processing (e.g. every 5 seconds) might already be in place;

modify it as follows:

SyncpointProcessing():
EXEC SQL UPDATE SYNCTable SET PRNO=:ProdNo, ORDNO=:OrdNo, Totals = :Totals ;
EXEC SQL COMMIT ; -- of both the data modifications and the synpoint info

33

Pseudo-conversational programs

· Not a new issue -- but typical for a “NoSQL” approach: client decision

· Typical situation:
· User wants to scroll through a Db2 result set
· The program shows only (say) 10 results (one screenful) at a time
· Programs might allow for updates/inserts or might be read-only
· Scroll-forward “next screen” & scroll-backward “previous screen”

· Pseudo-conversational approach:
· Program reads just 10 rows from cursor, then disconnects from Db2
· On “next screen”, it reconnects, runs cursor with additional WHERE cond

· Program needs to remember “last entry seen”

34

Pseudo-conversational programs (cont’d)

· Example:

-- “data-dependent pagination”:
EXEC SQL DECLARE nextscreen CURSOR FOR

SELECT ... FROM ... WHERE ... AND (PRODNO,ORDNO) > (:ProdNo, :OrdNo)
ORDER BY PRODNO, ORDNO
FETCH FIRST 10 ROWS ONLY ;

EXEC SQL OPEN nextscreen ;
EXEC SQL FETCH nextscreen INTO :ProdNo, :OrdNo, ... ;
while (SQLCODE == 0) :

Display_data() ;
EXEC SQL FETCH nextscreen INTO :ProdNo, :OrdNo, ... ;

EXEC SQL CLOSE nextscreen ;
-- at this point, ProdNo and OrdNo are ready for the next “OPEN CURSOR”

35

Pseudo-conversational programs (cont’d)

· Scrolling backwards:
EXEC SQL DECLARE prevscreen CURSOR FOR

SELECT ... FROM ... WHERE ... AND (PRODNO,ORDNO) < (:FirstProdNo, :FirstOrdNo)
ORDER BY PRODNO DESC, ORDNO DESC
FETCH FIRST 10 ROWS ONLY ;

EXEC SQL OPEN prevscreen ;
EXEC SQL FETCH prevscreen INTO :LastProdNo, :LastOrdNo, ... ;
FirstProdNo <- LastProdNo; FirstOrdNo <- LastOrdNo;
while (SQLCODE == 0) :

Display_data_backward() ;
EXEC SQL FETCH prevscreen INTO :FirstProdNo, :FirstOrdNo, ... ;

EXEC SQL CLOSE prevscreen ;

(will also need FirstProdNo &FirstOrdNo on forward cursor traversal ...)

36

In summary ...

· NoSQL, BigData, analytics
· Db2 supports non-flat data: XML (and JSON)
· more Db2 flexibility: BLOB, hash access, APPEND YES, MQTs, ...

· Parallelism and sharding
· only IDAA implements a really “shared-nothing” NoSQL setup
· CAP theorem: cannot be 100% ACID and 100% sharded ...
· Db2 features for “mimicing” NoSQL: data sharing, clone tables, no indexes

· Weakening ACID in Db2
· ISOLATION(UR); NOT ENFORCED; LOG NO; -START ACCESS(FORCE); ...
· how to make Db2 batch programs restartable
· how to make interactive programs pseudo-conversational

37

Please fill out your session

evaluation before leaving!

From ACID to BASE: NoSQL with Db2

Peter Vanroose
ABIS Training & Consulting
pvanroose@abis.be

Session code: G6

