
IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Session code:

Spark your Db2 data warehouse

Peter Vanroose
ABIS Training & Consulting

F16

Thu Oct 24 2019, 09:40 Platform: Cross-Platform

ABIS is a training & consulting company
located in Leuven (Belgium) & Woerden (The Netherlands);

main topics of interest include
databases, data analytics, mainframe, and programming languages.

Peter Vanroose is senior instructor & consultant at ABIS,
where he teaches (a.o.) Db2 and data analytics related courses.

This includes SQL for BI & Data Science, Spark, Hadoop,
and of course Db2 for z/OS: performance, DBA, and application design.

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Agenda

• Understand how Db2 may integrate
with Spark, R, and Hadoop

• Realize which high-volume building blocks
of typical analytics algorithms
are well suited to be delegated to Db2

• Learn some basic Spark syntax,
sufficient to build useful data analysis tasks
with Db2 data

Over the last few years, Spark has become the most popular open-source analytics
engine for large-scale data processing. Its success is mainly due to its ease of use, its
performance, and its flexible access to external data sources.

With "Big R", a BigInsights component, IBM already explored the possibilities of
delegating data-intensive analytic workload from the open-source statistics platform
"R" to Db2.

In this presentation, we explore similar possibilities with open-source Spark as a front-end.
By isolating some recurring data-intensive tasks in typical Spark workloads, and

delegating those to Db2, we were able to considerably improve performance of some
data analytics use cases.

Key to this is a well configured data warehouse in Db2, including e.g. indexes, MQTs, and
stored procedures. This is only possible if Db2 architects have a good understanding of
how Spark (and underlying Hadoop MapReduce) works.

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Agenda – details:

• I. Context: The data warehouse
 The “classic” data warehouse
 The “NoSQL” data warehouse

• II. Spark
 Background: cluster computing; Hadoop; MapReduce
 Setup: ease of use; connectors (e.g. Db2); development environment

• III. Db2 with Spark
 Cloud solutions; BigR ideas
 Spark “data souce” integration
 Use cases for data-intensive tasks

This presentation consists of three main parts:
– In part I, the “use case” context for Spark is sketched
– In part II, Spark is briefly discussed, together with some background necessary to

understand its structure & design, viz. Hadoop & MapReduce
– Part III contains the main message of this presentation:
 What can Spark do for a Db2 user,

 and how can Db2 provide direct benefit to a Spark user?

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Disclaimers

• This presentation is unavoidably limited in scope;
Please feel free to ask questions during the presentation!

• All explanations are correct, but will be somewhat simplified
(i.e.: might miss some detail and/or nuance)
Again: please feel free to ask for more details during the presentation

• See the notes (in the PDF) for pointers to additional information

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

I. Context: The data warehouse

• The classic data warehouse:
 RDBMS like Db2: aggregation, OLAP, indexes, MQTs, …
 Statistical software (e.g. SPSS, R)
 “Machine Learning”
 pattern recognition, clustering, classification, regression, ...

• The NoSQL case:
• Less guarantees, but more volume & velocity, less structure
• Implementations: Hadoop, Spark, ...

Summary of part I

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

The classic data warehouse

• RDBMS:
 On-Line Analycs (OLAP) => aggregation (SUM, COUNT, AVG) + grouping sets
 answer BI questions, like:

revenue: overview per year, month, region, product
TOP-10 (best customers, most promising new markets, least profitable products)
 => needs “total sorting” (= n log n); indexing not allways possible …

 typical setup: data warehouses: ETL; heavy pre-sorting & aggregation
• Statistical software (e.g. SPSS, R):

 graphical possibilities (better than Excel): scatter plot, histogram, time series, …
 statistical modeling (e.g. lin. regression) & trend analysis => decision support

• Machine learning (ML)
 “classic” examples: spam filters, virus scanners, OCR, search engines

Part I – the “classic” RDBMS data warehouse:
– a typical ETL (extract / transform / load) database environment
– read-only for most of the time; re-loaded with production data from time to time
– use cases: analytics-related (“BI”: business intelligence)

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

The NoSQL data warehouse

Enormous amounts of data, less structured, no time (or need) for ETL:
 The 3 V’s: volume, velocity, variety (& variability)
 “Big Data” => Hadoop (HDFS), Amazon S3, …

 assumes a cluster of commodity hardware (sharding ― scale out)
 fail-safe because of redundance

 but ... less data consistency guarantees
 because of the CAP theorem (Brewer, 2000):

 can only have 2 out of 3: consistency, availablility, partitioned
 BASE instead of ACID

 analytical frame work: MapReduce => “access path” framework

Part I – the “not so classic” data warehouse
– the so-called NoSQL context
– similar analytics use cases, but completely different setup
– perfectly suited for
 * larger volume data
 * ad-hoc querying

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

II. Spark

• became the most popular “distributed data” analytics engine
• Background:

 cluster computing
 Hadoop
 MapReduce
 “function to data”

• The Spark setup
 ease of use; performance; connectors; development environment

Summary of part II

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: background

• cluster computing
• Hadoop

 is the first generation analytics engine
 built after Google’s prototype framework

• MapReduce
 Hadoop’s “computational” building block
 “distributed computing” framework
 Consists of: Mapper, Shuffler, Reducer

• “Function-to-data”, instead of data-to-function

Part II: summary of Spark background

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Cluster computing

 Like a supercomputer
 But “shared-nothing” setup:

Every node has
 its own disk
 its own RAM
 its own processor(s)
“commodity hardware”
Jobs ideally run
 in parallel
 on partitions of the data

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Hadoop

 An Apache project (https://hadoop.apache.org/)
 Implemented in Java => runs in JVM
 3-in-1:

 Storage: HDFS, the Hadoop Distributed File system
Partitioned data resides on different cluster nodes; replication (3-fold)
No support for updates! => only read, append, drop; auto-partitioning

 Computation engine & framework: MapReduce
Parallelized algorithm runs on all processing nodes (ideally: = data node)

 Job scheduler / resource negotiator: Yarn
Submit job steps on selected nodes: CPU / RAM / disk

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Function-to-data

 I/O efficiency : avoid (unnecessary) data transfer

 Especially important with clustered, high-volume data !
 No ACID guarantees, though … (data copies; data modifications; ...)

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

MapReduce

 Hadoop’s (and Spark’s)
computational framework:
– user provides mapper:

specify: record =>(key,value)
– user provides reducer:

(key, value-list) => record
– framework provides shuffler:

guarantee:
equal keys from mappers
go to same reducer

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Hadoop + Hive

• Hive (https://hive.apache.org/): layer on top of Hadoop MapReduce
• A “de facto” SQL optimizer: translates SQL into MapReduce job(s)
• Example:

CREATE TABLE weblog (ip STRING, ..., webpage STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ' '
LOCATION 'hdfs://host/dir/weblogs.log' ;

SELECT webpage,COUNT(*) FROM weblog WHERE ip LIKE '10.%'
GROUP BY webpage ORDER BY 2 DESC LIMIT 30;

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: design principles

• Ease of use
• Performance
• Easy integration with other components

 Data connectors (storage; input & output)
 Cluster scheduler
 Extension libraries
 Interactive & programmatoric user interfaces

• Development environment
 Single “node”; REPL; integrates with R, Python, Java, Scala

Part II: summary of Spark setup & design principles

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: an overview

 Kind of redesign of Hadoop + Hive
 & with ideas from R, (I)Python, Jupyter, Zeppelin, Mahout, Storm, Avro, …

 combines the best elements of all its predecessors
 top-down approach:

 good, simple user interface, prevents making “stupid mistakes”:
· fast prototyping: command interface (interactive) => deploys easily
· provide for a data flow pipeline via immutable objects & methods

 simple integration with existing frameworks
• better than its predecessors: e.g. in-memory where possible

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: data connectors

Flexible interface to data sources (& data sinks):
 Through URI notation:

file:///dir/filename
hdfs://dirname/filename
s3a://bucket/filename
s3n://bucket/filename
jdbc:db2://host/ssid

 Through context methods:
val x = sc.cassandraTable(...)
val y = read.format("jdbc"). ...
y.write.format("csv"). ...

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: cluster manager (job scheduler)

Flexible setup:
• Spark can work with any

cluster manager:
– Yarn (<== Hadoop)
– Mesos
– Spark-provided

• “local mode” (no cluster)
• Cluster manager is a resource negotiator: RAM / (disk) / CPU
• SparkContext is programmer’s abstraction of resources:

– variables => RDDs (resilient distributed data) & DataFrames
– dependencies: “directed acyclic graph” (DAG):

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: extension libraries

• GraphX: “interconnected” data representation
• Parallelized implementations of well-known algorithms
• e.g. Page Rank algo

(Google)

• Streaming

• MLlib: machine learning
• Parallelized implementations

of well-known algorithms
e.g. regression, classification, clustering, ...

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: development environment

• REPL:

•

Read – evaluate – print loop
 Kind of “shell” environment
 Similar to R, to IPython

• Straightforward deployment
• No need to change a single command
• Interactive “script” becomes production “batch program”

• Integrates with:
 R, Python, Java (no REPL), Scala

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Using Spark

• Installation:
 Download & install latest version from spark.apache.org on a Linux system

or: download a preconfigured virtual image, e.g. CDH from www.cloudera.com
 or: use a preconfigured cloud solution:

 AWS (Amazon Web Services) EMR (Elastic MapReduce), EC2
 Google Cloud Platform(https://cloud.google.com/hadoop/)
 IBM Cloud: https://www.ibm.com/cloud/spark (Watson, BigInsights)

• Logon to the (stand-alone) server (Linux command line)
• Start the REPL shell

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: an example (1|3)

[Linux]$ spark-shell --jars $DB2HOME/sqllib/java/db2jcc4.jar
Spark context Web UI available at http://spark.abis.be:4040
Spark context available as 'sc' (master = local[*], app id = local-123456).
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
/___/ .__/_,_/_/ /_/_\ version 2.4.3
 /_/
Using Scala version 2.11.12 (OpenJDK 64-Bit Server VM, Java 1.8.0_191)
Type in expressions to have them evaluated.
scala>

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: an example (2|3)

scala> 1 + 2
res1: Int = 3
scala> 333 - 1000.0 / 3
res2: Double = -0.3333333333333144
scala> sc
res3: org.apache.spark.SparkContext = org.apache.spark.SparkContext@abcdef01
scala> val textFile = sc.textFile("file:/home/peter/mytext.txt")
textFile: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1]
scala> val words = textFile.flatMap(line => "\\w+".r.findAllIn(line))
scala> val words_as_key_val = words.map(word => (word, 1))
scala> val words_with_counts = words_as_key_val.reduceByKey((v1,v2)=>v1+v2)
 # all unique words from the text, with their occurrence count
scala> words_with_counts.saveAsTextFile("file:/home/peter/count.out")
scala> :quit
[Linux]$

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark: an example (3|3)

scala> val mytbl = spark.read.format("csv").option("delimiter","\t").
 option("inferSchema","true").option("header","true").
 load("hdfs://localhost/user/peter/mytbl.csv")
mytbl: org.apache.spark.sql.DataFrame = [nbr: int, name: string, tel: string]
scala> mytbl.registerTempTable("persons")
scala> val cnt = spark.sql("SELECT count(*) AS total FROM persons")
cnt: org.apache.spark.sql.DataFrame = [total: bigint]
scala> val total = cnt.head(1)(0)
total: org.apache.spark.sql.Row = [4162051]
scala> val telnrs = mytbl.where("tel IS NOT NULL").select("name","tel")
telnrs: org.apache.spark.sql.DataFrame = [name: string, tel: string]
scala> telnrs.write.format("csv").option("header","true").save("hdfs:telnr")
scala> :sh hadoop fs -ls -R
drwxr-xr-x - peter supergroup 0 2019-10-24 09:37 telnr
-rw-r--r-- 3 peter supergroup 643731 2019-10-24 09:37 telnr/part-00000-abcdef.csv

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Spark essentials in a nutshell

1st example: RDD = resilient distributed dataset; immutable object
 Is a “virtual object”; lazy evaluation: dependency graph (DAG) is stored
 Is a (long) list of “similar records” (very flexible)
 “transformation”: in-cluster (virtual) conversion from RDD to RDD

e.g. map(f), flatMap(f), filter(f), reduceByKey(f), sortBy(f)
 “action”: cluster-to-client (real) conversion

e.g. collect(), take(10), max()
2nd example: DataFrame = “table-like” cluster object

 Similar to RDD
 Can only store rows with identical column structure & data types
 2nd generation: more efficient than RDD; new (different) API; supports SQL

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

III. Db2 with Spark

• The Spark JDBC data connector
• How to use it with Db2
• Possibilities & limitations

• “Nice to have” mutual benefits (cf. idea’s in IBM’s BigR)
• Avoid huge amounts of data traffic
• Use Db2’s strengths: indexes & optimal access paths

• Other connection possibilities
• Use cases for Db2 / Spark cooperation

• Spark functionality (e.g. Machine Learning algos) on Db2 data
• Db2 data (e.g. pre-aggregated data warehouse columns) for BI use
• Spark & Db2 “in the cloud” => IBM/AWS/... cloud solutions

Summary of part III

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

The Spark JDBC connector with Db2

• “Read from JDBC” returns a DataFrame:
 val url = "jdbc:db2://hostname:50000/ssid?user=peter&password=pwd"
 val act = spark.read.format("jdbc").option("url",url).option("driver",
 "com.ibm.db2.jcc.DB2Driver").option("dbtable","db2.act").load()
 act: org.apache.spark.sql.DataFrame = [actno: smallint, actkwd: string, actdesc: decimal(9,2)]

• No query is run yet: DataFrame is a “just-in-time” object! (=> DAG)
• Saving a DataFrame as a Db2 table:
 telnrs.write.format("jdbc").option("url",url).option("dbtable","peter.tel").
 option("createTableColumnTypes","name VARCHAR(64),tel VARCHAR(32)").save()

• Interrogating a Db2 table:
 val nrcourses = spark.read.format("jdbc").option("url",url).
 option("query","SELECT count(*) FROM db2.act").load().head(1)(0)

For an example from IBM (for their cloud usage of Spark), see e.g.
https://cloud.ibm.com/docs/services/AnalyticsEngine?topic=AnalyticsEngine-working-
with-sql

For an example of more specifically the Spark Db2 connector: see e.g.
https://cloud.ibm.com/docs/services/AnalyticsEngine?topic=AnalyticsEngine-spark-
connectors

Those examples use the Python language interface instead of Scala which is used in this
slide; the example in this slide would read as follows with Python:

url = "jdbc:db2://hostname:50000/ssid?user=peter&password=pwd"
courses = spark.read.format("jdbc").option("url",url).option("dbtable","tu.courses").load()
telnrs.write.format("jdbc").option("url",url).option("dbtable","peter.tel")
 .option("createTableColumnTypes","name VARCHAR(64),tel VARCHAR(32)").save()

 nrcourses = spark.read.jdbc(url).option(query,"
 SELECT count(*) FROM tu.courses").load().head(1)[0]

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

The Spark JDBC connector – possibilities & limitations

• “Read from JDBC” always returns a DataFrame
– is a distributed virtual object, but no way to make the Db2 connection “parallel”
– full dataframe has to “materialize” in the Spark cluster

• User should delegate any filtering / mapping / aggregation to Db2
– i.e.: write those actions inside the SQL statement, not in DataFrame terms
– no automatic delegation (yet)

• Db2 data presents itself as DataFrame
– flexible & straightforward to combine it with DF from other sources (e.g. join)
– careful with (automatic) datatype conversions!
 More specifically: DECIMAL(n,p) <==> double; VARCHAR length; TIMESTAMP

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

The Spark JDBC connector – an example

• Don’t write
val courses = spark.read.format("jdbc").option("url",url).
 option("dbtable","tu.courses").load()
val c=courses.filter(col("ctitle").like("%Db2%")).select("cdate","cprice")
val summary = c.map((x,y)=>(year(x),y)).groupBy("cyear").sum("cprice")

• But instead write
val summary = spark.read.format("jdbc").option("url",url).option("query","
 SELECT year(cdate), SUM(cprice)
 FROM tu.courses
 WHERE ctitle LIKE '%Db2%'
 GROUP BY year(cdate)
 ").collect()

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 & Spark – “Nice to have” mutual benefits

• cf. ideas found in IBM’s BigR
• Avoid unnecessary data transfers:

– delegate table filtering to Db2 (indexable!)
– delegate aggregation to Db2? (sum/count/min/max/avg)
– efficient table joining (indexable!)

• Challenges:
– join Db2 table with Spark DataFrame
– access path selection (optimizer) – is whose responsibility?
– map Db2 partitioning to Spark partitioning (parallelism)

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 & Spark – ideas from BigR

IBM’s BigR: integrates R within IBM InfoSphere BigInsights
• Using a standard R interface, user can access BigInsights cluster data
• Data is presented as an (R) DataFrame => standard R functions can be used
• R functions are pushed down to the data (“function-to-data”)
• R syntax (esp. Operator overloading) easily allows this implementation

Could these ideas be mapped onto
• Scala (instead of R)
• Db2 (instead of BigInsights MapReduce cluster)

?

See e.g.
https://www.ibm.com/support/knowledgecenter/en/SSPT3X_3.0.0/
 com.ibm.swg.im.infosphere.biginsights.bigr.doc/doc/intro.html

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 & Spark – how to optimize data transfers?

• Set up parallel threads from Spark “worker nodes” to Db2
• Exchange meta-data knowledge

• esp. Db2 partitioning
• maybe also catalog statistics
• or just filter factor estimates?

• Push down data reduction transformations to Db2:
• e.g. WHERE (indexable)
• JOIN (indexable & filtering; star join) → even with non-Db2 data!
• GROUP BY => SUM, COUNT, MIN, MAX

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 & Spark – the importance of Db2 range partitioning

• Parallelism (for Spark–Db2 communication) can only work
• when Db2 data is partitioned
• when this partitioning can easily be described => need range partitioning (PBR)

=> rule-of-thumb: at most 128 MB per partition
=> Db2 LUW: use pureScale

• when the Db2 partitions are easily accessed independently & in parallel
=> I/O parallelism (different disks / volumes)
=> CPU parallelism (multi-processor; Db2 z/OS: use data sharing)

• Need for transparent partition-level interface in Spark
=> to be implemented ...

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 & Spark – the importance of design patterns

• Transparent & efficient implementation (i.e.: translation to Db2)
of Mappers & Reducers (esp. SUM / AVG / MIN MAX / FETCH FIRST)
can only work well

• when design patterns for parallelism are well understood by implementors
• these have been studied intensively by implementors of e.g. Hive
• a very readable & practically useful book on the subject:

“MapReduce Design Patterns”, Building Effective Algorithms and Analytics for Hadoop,
Donald Miner & Adam Shook, O’Reilly, December 2012, ISBN 978-1-449-32717-0

• the most important MapReduce design patterns
are summarized on next slides

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 & Spark – MapReduce design patterns (1|2)

• Filtering patterns:
• Simple filters (based on content) => leave to Db2 (indexing!); careful: sargeable
• Top-N filters => avoid total sort: delegate to partitions, then recombine!
• Bloom filters => for sparse data; not supported directly by Db2 …
• Distinct filters (removing duplicates) => avoid total sort; e.g. only through index

• Summarization patterns:
• counting & summing (= adding numerical values) => easily parallelizable
• min & max => often efficiently indexable
• avg, std dev, correlation => less evident! (only indirectly parallelizable)
• median, quantiles, … => require total sort ...

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 & Spark – MapReduce design patterns (2|2)

• Summarization patterns (cont.):
• inverted index (cf. keyword index at end of book)
 => a “GROUP BY” without loss of detail !

=> Db2 has LISTAGG function (z/OS: as of version 12 FL 501)
• Total order sorting
• Joining: Db2 table(s) with non-Db2 data

• replicated join (when all but 1 of the sets fits in memory) => cf. Db2 star join
=> make sure the in-memory lookup tables have their FKs as (hash) keys

• reduce-side join (generic) => use the Db2 idea of a hybrid join (“list prefetch”)
• most inner/outer join variants are easily covered

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 / Spark cooperation – use cases

Apply Machine Learning algorithms to Db2 data:
• Example 1: train a linear regression model from some training data:
import org.apache.spark.ml._
val lr = new regression.LinearRegression

val trainingData = spark.read.format("jdbc").option("url",url).option("query","
 SELECT avg(time) AS deliv,avg(satisfac) AS label FROM orders GROUP BY cust_id")
val assembler = new feature.VectorAssembler().setInputCols(Array("deliv")).setOutputCol("features")
val lrModel = lr.fit(assembler.transform(trainingData))

println(s"Coefficient: ${lrModel.coefficients(0)} Intercept: ${lrModel.intercept}")
println(s"RMSE: ${lrModel.summary.rootMeanSquaredError}")

// Next apply the model to new data, as to predict satisfaction from delivery time:
val predicted_satisfaction = lrModel.predict(linalg.Vectors.dense(2.5))

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Db2 / Spark cooperation – use cases

• Example 2: cluster my customers into 3 “typical groups”
import org.apache.spark.ml._

val kmeans = new clustering.KMeans; kmeans.setK(3).setSeed(1L)
val trainingData = spark.read.format("jdbc").option("url",url).option("query","
 SELECT cust_id,avg(price) AS price,count(*) AS cnt FROM orders GROUP BY cust_id")

val a = new feature.VectorAssembler().setInputCols(Array("price","cnt")).setOutputCol("features")
val t = a.transform(trainingData); val model = kmeans.fit(t)

println(s"Cluster centers: ${model.clusterCenters} Sizes: ${model.summary.clusterSizes}")
println(s"within-set sum of squared errors: ${model.computeCost(t)}")

// Show all “similar” customers, e.g. those that fall into cluster nr. 2 :
model.summary.predictions.filter("prediction=2").select("cust_id").collect

-

IDUG Db2 Tech Conference
Rotterdam, Netherlands | October 20-24, 2019

Session code:

Please fill out your session evaluation
before leaving!

Peter Vanroose Spark your Db2
ABIS Training & Consulting data warehouse
pvanroose@abis.be

F16

-

